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QUASYSIMMETRIC INVARIANTS FOR FAMILIES OF POSETS

DORIANN ALBERTIN, JEAN-CHRISTOPHE AVAL, AND HUGO MLODECKI

Abstract. We address the question whether certain classes of labeled posets
can be distinguished by their P-partition enumerator. Recent progress have
been made for naturally labeled posets [5, 10, 11]. We investigate the general
question and prove that the P-partition enumerator does distinguish classes
of labeled posets that we call: fair series-parallel posets, cypress trees, and
centipedes.

1. Introduction

1.1. Distinguishing combinatorial objects, a classical problem. Consider
an invariant Γ on a class of graphs G. It is a basic question, both classical and
active in the recent years, to decide whether Γ is injective on (isomorphic classes
of) G. In this case we say that Γ distinguishes elements of G.

Let us start by recalling the definition of the celebrated chromatic polynomial
χ. In the following definitions, all graphs are finite and simple.

Definition 1.1. A (proper) coloration of a graph G = (V,E) is a function

c : V −→ N
∗

such that for v, v′ ∈ V , (v, v′) ∈ E ⇒ c(v) 6= c(v′).

It is well-known that the number of colorations of G over t colors turns out to
be a polynomial in t, which we denote by χG(t), the chromatic polynomial of G.
It is true that some informations can be derived from χG, such as the number of
vertices |V |, the number of edges |E|, or the number of connected components of G.
But χ is very far from being able to distinguish even simple classes of graphs, since
for example χT (t) = t(t− 1)k−1 for any tree T with k vertices.

In order to distinguish classes of graphs, Stanley defined in 1995 a new chromatic
invariant, stronger than the chromatic polynomial [18]. Let x = x1, x2, . . . denote
an infinite commutative alphabet.

Definition 1.2. The chromatic symmetric function XG of a graph G is defined as

XG(x) =
∑

c

xc

where the sum ranges over the colorations c of G, and xc stands for
∏

i∈N∗ x
|c−1(i)|
i .

In his original paper, Stanley observed that XG does not distinguish graphs in
general: he gave the example of two graphs on 5 vertices with equal chromatic
symmetric functions. But he conjectured the following.

Conjecture 1.3. The chromatic symmetric function distinguishes trees: for any
pair of trees T1 and T2, if XT1 = XT2 , then T1 and T2 are isomorphic.
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This conjecture has been intensively studied and proved for special subclasses of
trees [15, 12, 7, 8]. Important variations have been proposed [17, 3, 13], but it is
still open in general.

Let us now turn to an analogue of the previous question, in the setting of (labeled)
posets instead of graphs.

1.2. The main question of this work: quasisymmetric invariant distin-

guishing labeled posets. Let P be a poset with n elements; we write |P | = n.
Denote the order relation on P by ≤P , to avoid the confusion with the usual or-
der on the positive integers, which we shall note ≤. A labeling of P is a bijection
ω : P → [n]. A labeled poset (P, ω) is then a poset P with an associated labeling ω.

Definition 1.4. For a labeled poset (P, ω), a (P, ω)-partition is a map f from P

to the positive integers satisfying the following two conditions:

• if a <P b, then f(a) ≤ f(b), i.e., f is order-preserving;
• if a <P b and ω(a) > ω(b), then f(a) < f(b).

In other words, a (P, ω)-partition is an order-preserving map from P to the
positive integers with certain strictness conditions determined by ω. Examples of
(P, ω)-partitions f are given in Figure 1.

The meaning of the double edges in the figure follows from the following observa-
tion about Definition 1.4. For a, b ∈ P , we say that a is covered by b in P , denoted
a ≺P b, if a <P b and there does not exist c in P such that a <P c <P b. Note that
a definition equivalent to Definition 1.4 is obtained by replacing both appearances
of the relation a <P b with the relation a ≺P b. In other words, we require that f

be order-preserving along the edges of the Hasse diagram of P , with f(a) < f(b)
when the edge a ≺P b satisfies ω(a) > ω(b). With this in mind, we will consider
those edges a ≺P b with ω(a) > ω(b) as strict edges and we will represent them in
Hasse diagrams by double lines. Similarly, edges a ≺P b with ω(a) < ω(b) will be
called weak edges and will be represented by single lines.

From the point-of-view of (P, ω)-partitions, the labeling ω only determines which
edges are strict and which are weak. Therefore, we say that two labeled posets
(P, ω) and (Q,ω′) are isomorphic if P and Q are isomorphic as posets and they
have equivalent sets of strict and weak edges according to a poset isomorphism.

Definition 1.5. An edge-decorated poset is a poset P such that each edge in the
Hasse diagram of P is assigned to be either large or strict.

From now on, we will consider edge-decorated posets P instead of labeled posets
(P, ω). Moreover, we shall use the notations: P for the edge-decorated poset ob-
tained by switching weak and strict edges in P , and P l for the reverse (upside-down)
poset with the same decoration of edges.

If all the edges of P are weak, as in Figure 1(b), P is said to be weak. This
correponds to order-preserving labelings ω, and such P are called naturally labeled
in some references.

Definition 1.6. Let P be an edge-decorated poset. The well-known P -partition
enumerator is defined by

(1) KP (x) =
∑

f

x
#f−1(1)
1 x

#f−1(2)
2 · · ·
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Figure 1. Examples of (P, ω)-partitions (the images are written in bold and blue
next to the nodes)

(a) (b)

Figure 2. Pairs of weak posets with equal P -partition enumerators

where the sum ranges over all P -partitions f : P → P.

A poset being a tree simply means its Hasse diagram is a tree. The following
conjecture is presented in [1].

Conjecture 1.7. The P -partition enumerator distinguishes weak trees.

If we try to relax the conditions in Conjecture 1.7, we obtain easily false state-
ments. Even for weak posets. The first example of non-isomorphic weak posets with
the same K was given in [16] and appears in Figure 2(a). A bowtie is the poset
consisting of elements a1, a2, b1, b2 with cover relations ai < bj for all i, j. Notice
that each poset in Figure 2(a) has a bowtie as an induced subposet. Otherwise,
we say the poset is bowtie-free. Weakening the tree hypothesis of Conjecture 1.7
to bowtie-free results in a false statement, with Figure 2(b) being the smallest
counterexample.

A important result in this context is the following.

Theorem 1.8 ([5], Theorem 1.3). The P -partition enumerator distinguishes weak
rooted trees.

But Conjecture 1.7 is still open. Theorem 1.8 was generalised to weak series-
parallel posets in [10]. Up to very recently, the effort put on distinguishing posets
through the P -partition enumerator has been focused on weak posets (we may add
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Figure 3. Two simple edge-decorated posets with equal P -partition enumerator

[11, 21] to the references already mentionned). When we consider general edge-
decorated posets (not necessarily weak), things are getting (way!) harder. Figure 3
shows how very simple edge-decorated posets may have the same K function. Of
course, this example implies that there is no chance to extend Conjecture 1.7 to
general edge-decorated trees.

Up to now, the first and only result for distinguishing edge-decorated posets was
obtained in [1] and concerns a family named (rooted) fair trees.

It is the purpose of this article to present new results on this question. We prove
here that the P -partition enumerator does distinguish families named: fair series-
parallel posets (Section 4), cypress trees (Section 5), and centipedes (Section 6).

2. Definitions and useful tools

2.1. Quasisymmetric functions. We shall give here basic definitions and prop-
erties about quasisymmetric functions.

For our purposes, quasisymmetric functions are elements of Q[[x1, x2, . . .]] and
we denote the ring of quasisymmetric functions by QSym. We will make use of
both of the classical bases for QSym. If α = (α1, α2, . . . , αk) is a composition of n,
then we define the monomial quasisymmetric function Mα by

Mα =
∑

i1<i2<...<ik

xα1

i1
xα2

i2
· · ·xαk

ik
.

We recall that compositions α = (α1, α2, . . . , αk) of n are in bijection with subsets
of [n−1], and let S(α) denote the set {α1, α1+α2, . . . , α1+α2+ · · ·+αk−1}. Thus
we also denote Mα by MS(α),n. Notice that these two notations are distinguished
by the latter one including the subscript n; this subscript is helpful since S(α) does
not uniquely determine n.

The second classical basis is composed of the fundamental quasisymmetric func-
tions Fα defined by

(2) Fα = FS(α),n =
∑

S(α)⊆T⊆[n−1]

MT,n .

The relevance of this latter basis to K(P,ω) is due to Theorem 2.1 below.
Recall that any permutation π ∈ Sn has an associated descent set des(π) given

by {i ∈ [n− 1] : π(i) > π(i + 1)}. We will call the corresponding composition of n
the descent composition of the permutation π, denoted co(π). As an example,
if π = 243561, then des(π) = {2, 5} and co(π) = 231. Let L(P, ω) denote the set
of all linear extensions of P , regarded as permutations of the ω-labels of P . For
example, for the labeled poset in Figure 1(a), L(P, ω) = {1423, 1432, 4123, 4132}.

Theorem 2.1 ([4, 19, 20]). Let (P, ω) be a labeled poset with |P | = n. Then

K(P,ω) =
∑

π∈L(P,ω)

Fdes(π),n =
∑

π∈L(P,ω)

Fco(π) .
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Figure 4. The labeled poset of Example 2.2

Example 2.2. The labeled poset (P, ω) of Figure 4 has L(P, ω) = {1324, 1342}
and hence

K(P,ω) = F{2},4 + F{3},4

= F22 + F31

= (M{2},4 +M{1,2},4 +M{2,3},4 +M{1,2,3},4)

+ (M{3},4 +M{1,3},4 +M{2,3},4 +M{1,2,3},4)

= M22 +M31 +M112 + 2M211 +M121 + 2M1111.

Remark 2.3. It is easy to deduce the P -partition enumerator of the edge-decorated
poset P obtained by exchanging weak and strict edges in P . We may call P the
dual of P . Indeed, if KP =

∑

α cαFα,n =
∑

α cαFS(α),n then KP =
∑

α cαFS(α),n

where S stands for the complementary set of the set S in [n− 1].
For example, the dual edge-decorated poset of Figure 4 has its P -partition enu-

merator equal to F121 + F112.

The following result appears in [6, 9, 14] and is crucial in our context, and more
generally in these questions about the distinguishability of combinatorial families
by the P -partition enumerator.

Theorem 2.4 ([6, 9]). QSym is a unique factorization domain.

2.2. Free quasisymmetric functions. We give a short survey of basic definitions
and properties about free quasisymmetric functions that we will use.

The Hopf algebra FQSym of Malvenuto-Reutenauer, also called Hopf algebra of
free quasi-symmetric functions ([2, 14]). The algebra FQSym is the vector space
generated by the elements (Fu)u∈S, where S is the disjoint union of the symmetric
groups Sn (n ∈ N). Its product and its coproduct are given in the following way:
for all u ∈ Sn, v ∈ Sm, by putting u = (u1 . . . un),

∆(Fu) =

n
∑

i=0

Fst(u1...ui) ⊗ Fst(ui+1...un),

Fu · Fv =
∑

w∈u �̄v

Fw,

where u �̄ v is the shifted shuffle of u and v, and st is the standardisation operator.
Its unit is 1 = F∅, where ∅ is the unique element of S0. Moreover, FQSym is a
N-graded Hopf algebra, by putting |Fu| = n if u ∈ Sn.
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Example 2.5.

F(1 2)F(1 2 3) = F(1 2 3 4 5) + F(1 3 2 4 5) + F(1 3 4 2 5) + F(1 3 4 5 2) + F(3 1 2 4 5)

+F(3 1 4 2 5) + F(3 1 4 5 2) + F(3 4 1 2 5) + F(3 4 1 5 2) + F(3 4 5 1 2),

∆
(

F(1 2 5 4 3)

)

= 1⊗ F(1 2 5 4 3) + F(1) ⊗ F(1 4 3 2) + F(1 2) ⊗ F(3 2 1)

+F(1 2 3) ⊗ F(2 1) + F(1 2 4 3) ⊗ F(1) + F(1 2 5 4 3) ⊗ 1.

3. Statistics determined by the P -partition enumerator

Much is known in the case of naturally labeled posets (see a list of properties in
[1]), by far less in the general case. In this section, we recall the theory of jumps
initiated in [16], slightly extending a result of [10], and we give a necessary condition
for two labeled posets to have the same P -partition enumerator in the special case
of posets with exactly one minimal element.

3.1. Jumps. The notion of jump was first considered in [16]. We recall here the
main definitions and results.

Definition 3.1. Let b be an element of a labeled poset P . Let us consider the
number of strict edges on a saturated chains from b down to a minimal element of
P . The jump of b is defined as the maximal such number. In a similar way the
up-jump of b is obtained by considering saturated chains from b up to a maximal
element of P .

We introduce the statistics: J↓
P (i) denotes the number of elements of jump equal

to i in P , J↑
P (j) the number of elements of up-jump equal to j in P , and JP (i, j)

the number of elements of jump equal to i and up-jump equal to j in P .
The first result was obtained by McNarama and Ward [16] (Proposition 4.2) who

proved that for any labeled poset P , the value of J↓
P (i) is determined for any i by

K. In the naturally labeled case, Liu and Weselcouch proved ([10], Lemma 3.9)
that for any i and j, the value of JP (i, j) is determined by K. We extend this to the
general case. Although it is quite similar to the aformentioned result, we consider
it useful to state and prove this result, since it is a powerful tool to distinguish
labeled posets.

Proposition 3.2. Let P and Q be edge-decorated posets. We have, for any i and
j:

(3) KP = KQ =⇒ JP (i, j) = JQ(i, j).

Proof. We shall use Corollary 5.3 in [16] which asserts that

KP = KQ =⇒ KP[i]
= KQ[i]

where P[i] denotes the restriction of P to elements of jump at least i. Thus we
have also that KP[(i,j)]

= KQ[(i,j)]
where P[(i,j)] denotes the restriction of P to

elements of both jump at least i, and up-jump at least j. By a simple degree
consideration, we get: |P[(i,j)]| = |Q[(i,j)]|. We conclude by observing that JP (i, j) =
|P[(i,j)]| − |P[(i+1,j)]| − |P[(i,j+)]|+ |P[(i+1,j+1)]|. �
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3.2. Posets with one minimal element. Now, the following lemma is very useful
when studying the P -partition enumerator of edge-decorated posets.

Lemma 3.3. Let P be an edge-decorated poset. If P has one minimal element
(that we denote by v0), the P -partition enumerator of P\v0 may be computed from
KP .

Proof. We use Theorem 2.1 and consider the linear extensions σ ∈ L(P ). Let us
denote by a1, . . . , ak the elements of P that cover v0 with strict edges, and b1, . . . , bl
the elements of P that cover v0 with weak edges. Such a σ may be of two types:
it always start with v0, followed by either an ai or a bi. In the first case σ has an
initial descent, thus F des(σ),n has a first part at least 2. In the second case σ has an
initial ascent, thus F des(σ),n has a first part equal to 1. Thus we can decompose the
P -partition enumerator K in two parts: K = K1+K2 with K1 consisting in the Fα

with α1 = 1 and K2 consisting in the Fα with α1 ≥ 2. Since the linear extensions
of P\v0 are just those of P without the initial v0, the P -partition enumerator of
P\v0 is K ′

1 +K ′
2 where K ′

1 is deduced from K1 by removing the first part (equal
to 1) in any Fα ∈ K1, and K ′

2 is deduced from K2 by substracting 1 to the first
part (greater or equal to 2) in any Fα ∈ K2. �

4. Fair series-parallel posets

In this section, we introduce a subclass of edge-decorated posets: fair series
parallel posets. We prove it is distinguished by the P -partition enumerator. This
result stands in the direct continuity of the article [1]. Beforehand, we give some
precise statements about quasisymmetric and free quasisymmetric functions.

Definition 4.1. A fair series parallel poset is an edge decorated poset recursively
defined as either:

• A single element [1],
• The poset P ⊔Q for any series-parallel posets P and Q,
• The poset P ↑ Q for any series-parallel posets P and Q, obtained from
P ⊔Q by adding a weak edge (p, q) for all pairs of maximal element p of P
and minimum element q of Q,

• The poset P ⇑ Q for any series-parallel posets P and Q, obtained from
P ⊔Q by adding a strict edge (p, q) for all pairs of maximal element p of P
and minimum element q of Q.

See Figure 5.

Fair series parallel posets are a natural generalization of fair trees of [1].

Remark 4.2. Fair series-parallel posets where all edges are weak correspond to
classical series-parallel posets. They are exactly the N -free posets. It is already
known that they are distinguished by strict P -partition enumerators, see [10]. It
remains open to characterize fair series-parallel posets as minor free posets.

Without further ado, we state the expected result:

Theorem 4.3. P -Partition enumerators distinguish fair series parallel posets.

We emphasize the fact that there are, to our knowledge, only two theorems about
injectivity of P -partition enumerators over families of posets with both weak and
strict edges: Theorem 4.4 of [1], and our theorem which generalizes the latter.
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Figure 5. Examples of connected fair series-parallel posets. The second one is in
particular a fair tree as of the definition of [1].

Following a recurrent pattern among proof of such injectivity theorems (see [5,
11]), we will heavily rely on the following technical irreducibility lemma:

Lemma 4.4. The P -partition enumerator of a connected fair series-parallel poset
is irreducible in QSym.

Proof. Let P be a connected fair series-parallel poset. Without loss of generality,
assume that P = Q ⇑ R for some fair series-parallel posets Q and R (the other case
being dual, thanks to Remark 2.3). Then all linear extensions of P admit the same
descent q := |Q|. We will show that this global descent, along with the homogeneity
of P -partition enumerators, implies irreducibility.

For contradiction, assume that KP = fg for some non-trivial f, g ∈ QSym.
Since KP is homogeneous (say, of degree n), then so are f and g (say, of degrees n1

and n2 with n1 + n2 = n). Let cα, dβ and eδ be the coefficients of KP , f and g, so
that :

∑

α�n

cαFα = KP = fg =





∑

β�n1

dβF β









∑

γ�n2

eγF γ



 .(4)

Then, lifting everything up to FQSym:

∑

σ∈Sn

cdes(σ),nFσ =





∑

ν∈Sn1

ddes(ν),n1
Fν









∑

τ∈Sn2

edes(τ),n2
Fτ



 ,(5)

=
∑

σ∈Sn

(

∑

σ∈ν �̄τ

ddes(ν),n1
edes(τ),n2

)

Fσ,(6)

the second sum in the last right hand side term being over ν and τ . Observe that
given any permutation σ ∈ Sn, there is only one pair (ν, τ) ∈ Sn1 × Sn2 such
that σ ∈ ν �̄ τ . Indeed, ν = σ[1,n1] is the permutation describing the n1 smallest
values of σ, while τ = σ]n1,n] is the permutation describing the n2 biggest values
of σ. Hence we get :

(7)
∑

σ∈Sn

cdes(σ),nFσ =
∑

σ∈Sn

ddes(σ[1,n1],n1)edes(σ]n1,n],n2)Fσ.

Since KP has a global descent q, it follows that

∀σ ∈ Sn, q 6∈ des(σ) ⇒ 0 = cdes(σ),n = ddes(σ[1,n1]),n1
edes(σ]n1,n],n2).
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For all β ∈ Sn1 and γ ∈ Sn2 we let σβ,γ be a permutation such that :

• q 6∈ des(σβ,γ),

• des(σ
[1,n1]
β,γ ) = β,

• des(σ
]n1,n]
β,γ ) = γ.

It is not hard to check that such a permutation always exists. Plugging σβ,γ into
Equation (7) yields:

∀β ∈ Sn1 , γ ∈ Sn2 , dβ · eγ = 0,

and it follows that either f = 0 or g = 0, which is absurd. �

Proof of Theorem 4.3. We proceed by induction on the size of the posets.
Let P and P ′ be fair series-parallel posets such that KP = KP ′ . We distinguish

according to the shape of P . If P =
⊔

i Pi with every Pi a connected fair series-
parallel poset, then KP = K⊔

i
Pi

=
∏

iKPi
. On the other hand, KP ′ = K⊔

i
P ′

i
=

∏

iKP ′

i
where P ′ =

⊔

i P
′
i . Unique factorization in QSym and Lemma 4.4 conclude

by induction.
If P = Q ⇑ R, then as before, all linear extensions of P admit |Q| as a descent,

and same goes for P ′ since KP = KP ′ . We claim that P ′ = Q′ ⇑ R′ for some
fair series-parallel posets Q′ and R′ with |Q| = |Q′| =: q. Showing this amounts
to showing that all linear extensions of P ′ have the same set of q first entries.
Assume by contradiction that σ and ν are two linear extensions of P ′ such that
there exist i ∈ σ[1,q]\ν[1,q] and j ∈ ν[1,q]\σ[1,q], and take such i (resp. j) maximizing
(resp. minimizing) the position of i (resp. j) in σ. If the position of i in σ is less
than q, denote by k the integer just right of i in σ. Since i is of maximal index in
σ, we have k ∈ ν[1,q], so k appears left of i in ν and right of i in σ, and i and k

are incomparable in P ′. As a result, exchanging i and k in σ yields another linear
extension of P ′. By induction, we may move i all the way to position q in σ, and the
resulting permutation would still be a linear extension of P ′. We proceed similarly
to move j to the position q + 1 in σ. We’ve just built a linear extension ℓ of P ′

with ℓq = i and ℓq+1 = j. Since i and j are incomparable in P ′ (they appear in
different orders in σ and ν), ℓ · (i, j) is also a linear extension of P ′. One of these
two extensions admits q as an ascent, which is absurd.

Since KP = KQ ⇑ KR, we can compute KQ (resp. KR) from KP by restraining
all compositions in the support of KP (in the monomial basis) to it’s first (resp. last)
blocks summing up to |Q| (resp. |R|). Same goes for KP ′ = KQ′ ⇑ KR′ , and we
deduce that KQ = KQ′ and KR = KR′ , and conclude by induction.

The case P = Q ↑ R is treated similarly. �

5. Cypress trees

Definition 5.1. A cypress tree is an edge-decorated poset consisting in a rooted
chain with either weak or strict edges (the trunk), on which are glued leaves by
weak edges.

Figure 6 shows two examples of cypress trees.

Proposition 5.2. Cypress trees are distinguished by the P -partition enumerator.

The key point is the following lemma.

Lemma 5.3. Let C be a cypress tree whose P -partition enumerator is K. It is
possible to get from K the number of leaves at the root in C.
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Figure 6. Cypress trees

Proof. Let us denote by a the number of leaves at the root in C.
We first deal with the case where all the edges of C are weak, which is easily

tested from K, because this is equivalent to J
↓
C(1) = 0. In this case we have:

a = J
↓

C
(1)− 1.

Thus we may suppose now that C has at least one strict edge. Let us denote by
m > 0 the number of such strict edges. We know that m may be derived from K,
it is simply the maximal value of the jump statistic.

Next let us introduce the number t of vertices of the trunk (excluding the root),
whose jump is zero, which coincides with the vertices of the trunk connected to
the root by only weak edges. We readily observe that t is exactly the number of
vertices in C with both jump equal to zero and up-jump different from zero (this
positive value being nothing but m).

If the first edge of the trunk is strict (ie. t = 0), then we have: a = J
↓
C(0). And

if the first two edges of the trunk are weak (ie. t > 1), then we have: a = J
↓

C
(1)−1.

Thus we are left with the case where the first edge of the trunk of C is weak,
and the second strict (ie. t = 1). We need also to define the following condition:
we say that the trunk of C is a 1-trunk if it has a weak edge at the root and
then only strict edges (remember we are in the case t = 1). We may use K to
test whether the trunk of C is a 1-trunk, by testing that JC(i, j) returns 1 for
(i, j) ∈ {(m, 0), (m− 1, 1), . . . , (1,m− 1)}.

We now introduce l = JC(1, 0). Then l = a unless the trunk of C is a 1-trunk,
in which case l = a+X , where X is the number of vertices (of the trunk) without
any leaf as a descendant.

So now, if the trunk C is a 1-trunk, we consider the maximal value k such that

J
↓
C(m) = 1, J↓

C(m − 1) = 1, . . . , J↓
C(m − k + 1) = 1. Let us denote by v1 and v2

the first and second vertex of the trunk of C. We distinguish two cases:

• if k < m (ie. v2 does not contribute to k), then X = k whence a = l− k;
• if k = m (ie. v2 does contribute to k), we have to decide whether v1 has

a positive number of leaves (in which case X = k) or not (in which case
X = k + 1). We are done by observing that the number of leaves of v1 is

just b = J
↓

C
(2). �
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Figure 7. Three A-centipedes with A = |, ||, || and the trunk depicted in orange.

Proof of Proposition 5.2. We will prove that we are able to reconstruct a cypress
tree from its P -partition enumerator. The proof is based on an induction on the
number of edges, the case of cypress with one edge being trivial.

So, let us consider a cypress tree C with n > 1 edges, whose P -partition enu-
merator is K. We know by Lemma 5.3 that we are able to get from K the number
of leaves at the root in C.

We may apply Lemma 3.3 to compute the P -partition enumerator K ′ of the edge-
decorated poset C′ obtained by erasing the root of C. Then we have: K ′ = F

a
1 ×L

where L is the P -partition enumerator of the cypress tree D consisting in erasing
the root and its leaves in C. We may now use the induction to derive D from L. �

6. Centipedes

Definition 6.1. Let A be a word in the two letters alphabet {|, ||}. A A-centipede
is an edge-decorated poset consisting in a rooted chain whose edges are strict or
weak according to A (its body), on which is glued any number of up-going weak
edges and down-going strict edges (its legs).

Figure 7 shows examples of centipedes.

Proposition 6.2. For any fixed A ∈ {|, ||}∗, A-centipedes are distinguished by the
P -partition enumerator.

Proof. We prove this statement by exhibiting the reverse bijection. Let A ∈ {|, ||}n

be a word with n1 letters | and n2 letters || and C be an A-centipede. For i ∈ [n+1],
call ai (resp. bi) the number of weak (resp. strict) legs attached to the ith node of
the body of C (starting at the bottom element).

Let k be number of |’s at the beginning of A, and ℓ ≤ k + 1 be the maximum
integer such that b1 = b2 = . . . = bℓ. We show that we recover ℓ from the P -
partition enumerator KC .

If k = 0, i.e. A0 = ||, then b1 = J
↑
C(n2+1) and we know whether ℓ = 0 or ℓ = 1. If

k > 0, J↑
C(n2+1) = b1+b2+. . .+bk. If b1 6= 0, then J

↓
C(0) =

∑n+1
i=1 bi, and otherwise

J
↓
C(0) >

∑n+1
i=1 bi. Since A1 = |, J↓

C
(0) =

∑n+1
i=1 bi+1, and we know whether b1 = 0.

Proceeding by induction, suppose b1 = b2 = . . . = bk′ for some k′ < k. Then in
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the same way, J↓
C(0) equals (resp. is greater than)

∑n+1
i=1 bi +

∑k′

i=1(ai + 1). Since

J
↓

C
(i) = ai + 1 for 1 ≤ i ≤ k, we know whether bk′+1 is null. In the end, we read

the value of ℓ out of KC through jumps.
Let’s prove we can recover all ai’s, starting with an+1. If An = |, then an+1 =

J
↓

C
(n1 + 1), and otherwise an+1 = J

↓
C(n2 + δℓ<k+1) − 1. By induction, assume we

know an+1 down to ai+1, and denote by m1 (resp. m2) the number of | (resp. ||)
in A between positions 1 and i − 1 (included). If Ai−1 = |, then JC(m1 + 1) is
the sum of ai, some aj for j > i and a constant. In the same way, if Ai−1 = ||,

then J
↓
C(m2 + δℓ<k+1) is the sum of ai, some aj for j > i and a constant. These

expressions only depend on ℓ, k, previous aj ’s and the form of A, and hence can be
read in the P -partition enumerator.

By defining dually k as the number of ||’s at the end of A and ℓ as the number
of nodes on top of the body of C with no weak leg, and performing the same kind
of computations, one recovers the values of the bi’s. One can alternatively invoke

a duality argument by considering the poset C
l

whose P -partition enumerator
contains the same information as KC . �

Remark 6.3. It is not very difficult to adapt the proof to show that the P -partition
enumerator distinguishes an A-centipede C from an A′ centipede C′ when A is a
prefix of A′ and both centipedes C and C′ have a strict leg attached to their bottom
element and a weak edge attached to their top element. We have no evidence that
this leg condition is necessary, but it allows the proof to work easily.
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